Instituto de Óptica "Daza de Valdés" Español | English

Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations  
Descripción:

We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.


     

    Año de Publicación:    2016
    Referencia:    Chen, S.; Baronio, F.; Soto-Crespo, J.M.; Liu, Y.; Grelu, P.; “Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations”, Phys. Rev. E, vol: 93, Páginas: 105 – 115 (2016)
    Revista:    Phys. Rev. E
    Explotación:    No.
     
    Investigación financiada por el Ministerio de Ciencia e Innovación y la Agencia Estatal de Investigación
    Instituto de Óptica "Daza de Valdés"
    (IO-CSIC)
    C/ Serrano, 121
    28006 Madrid (España)
    Tel: 915 616 800
    Consejo Superior de Investigaciones Científicas - Instituto de Óptica twitter twitter twitter twitter
    Si has formado parte del CSIC, únete a Alumni
    Biblioteca Dorotea Barnés
    Enlaces | Contacto | Aviso legal | Intranet | Instituto de Óptica (CSIC) | Exposición 75 años | Fondo Fotográfico “María Teresa Vigón”